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PART A

SCATTERING FROM COATED STRUCTURES

ABSTRACT

Part A of this report examines the scattering from coated,
conducting structures, specifically the coated dihedral <corner
reflector configuration and the coated strip/plate configuration. The
formulation uses impedance-wedge Uniform Theory of Diffraction
scattering coefficients to calculate the diffracted fields. A
finite-thickness coating is approximated using the impedance boundary
condition to arrive at an equivalent impedance for the coating. The
formulation of the impedance wedge coefficients is outlined.
Far-field, perfectly conducting approximations are discussed.
Problems with the present dihedral corner reflector model for certain
angles of incidence and observation are discussed along with a
potentially rectifying modification. Because the interactions
involved in analyzing the scattering from a dihedral corner reflector
are quite complicated, the strip/plate model is developed as a simpler
configuration for analyzing the diffraction coefficient modifications
and for isolating problem areas. Comparisons with data obtained
experimentally and using the Finite-Difference Time-Domain method are

included for the plate geometry.



I. INTRODUCTION

Now that high-frequency techniques for perfectly conducting
geometries, such as the UTD [1], (2] and various equivalent currents
methods [3]-[10], have reached a mature stage of development, the
emphasis in the research on high-frequency techniques has shifted to
dielectric and dielectric-covered materials. Dielectric materials are
useful in radar <cross section (RCS) reduction, thus accurate
prediction techniques are necessary for modeling procedures. Just as
in the perfectly conducting case, the wedge geometry is the canonical
structure used to determine scattering coefficients. Maliuzhinets
presented an exact solution to the scattering by an impedance wedge at
normal incidence in 1958 [11]; however, the difficult mathematical
nature of the representation precluded easy analytical use of the
solution.

Recent work has concentrated on asymptotic approximations to
Maliuzhinets’ exact solution in order to obtain computationally
tractable methods for predicting impedance-wedge scattering. Initial
solutions were for limited cases, such as the half-plane and 90-degree
wedge. In 1967, Bowman [12] used a steepest-descent approximation to
Maliuzhinets’ wedge solution for the special case of a half-plane
configuration to determine the scattering from an infinite impedance
strip. This solution was limited to normal-incidence backscattering
and was non-uniform [13]. In other words, this solution was analogous
to using Keller’s GTD diffraction coefficients [1] for the perfectly

conducting wedge.



More recent work by Tiberio, Pelosi, and Manara [13] has extended
to a uniform solution for first-order scattering from an infinite
strip at grazing incidence, analogous to the use of the UTD
diffraction coefficients [2] for the perfectly conducting wedge. This
work also considered higher-order scattering due to edge interactions
by using an extended spectral method, analogous to previous work in
the perfectly conducting realm [14]-[16]. In an extension of this
work, Tiberio and Pelosi later considered the scattering from
impedance discontinuities in a flat, infinite plane [17].

In a parallel attempt to formulate high-frequency approximations
to impedance wedge scattering, Volakis derived uniform diffraction
coefficients for scattering at normal and oblique incidence from an
impedance half-plane using a Wiener-Hopf solution to impedance
half-plane scattering ([18]. The resulting coefficients were similar
to the UTD coefficients for perfectly conducting geometries and were
just as computationally efficient because the integrals involved in
the solution were numerically approximated. In later work, Senior and
Volakis presented similar solutions for a 90-degree imperfectly
conducting wedge with one impedance face and one perfectly conducting
face [19] and for a dielectric half-plane of a given thickness [20].
Herman and Volakis also derived coefficients for up to third-order
diffractions from resistive, conductive, and impedance strips for all
angles of incidence and observation (21]. Volakis generalized this
work in his solution for scattering from finite-thickness impedance
half-planes and strips ([22] which involved a dual-integral equation

solution and the extended spectral ray method.



Most of the recent accomplishments in the area of impedance wedge
scattering theory have been limited to special cases. In 1985,
however, Tiberio, Pelosi, and Manara presented a general
high-frequency formulation for Maliuzhinets’ impedance wedge solution
in the form of a diffraction coefficient that was analogous to the
perfectly conducting UTD diffraction coefficient [23). This solution
contained the computationally inefficient Maliuzhinets function that
prevented obtaining numerical results for all but the 180-, 270-, and
360-degree impedance wedges. The UTD formulation, however, was very
promising if an accurate, generalized method for computing the
Maliuzhinets function could be formulated.

Recently, Griesser and Balanis reported a new, computationally
efficient, representation for the geometrical optics and diffraction
terms for impedance-wedge scattering [24] based upon the UTD
formulation of Tiberio, Pelosi, and Manara [23]. Using a series of
identities, the geometrical optics term is represented in terms of
reflection coefficients as opposed to Maliuzhinets functions, greatly
simplifying numerical computations. Additionally, the efficiency of
the UTD diffraction coefficient is improved by representing a double
integral in the complex plane in terms of the product of eight single
integrals in the real plane, which can be easily and quickly evaluated
with standard numerical integration routines. The results for
impedance wedges are highly accurate, as Griesser and Balanis reported
[24]; and the solution allows easy and fast computation of the
scattered fields for any size impedance wedge, not just certain cases
as in the past. The relative computational ease with which the

diffraction coefficients for any size impedance wedge <can be



calculated allows the high-frequency modeling of more complicated
geometries such as the impedance dihedral corner reflector, which has
been analyzed in a previous report [(25] and in [26].

A more interesting target configuration than one composed of a
homogeneous material is a coated conductor target, which could
realistically be found in low-observable vehicle designs. The main
problem in modeling a coated-conductor target is in representing the
effects of a finite-thickness coating. Research in this area is in
the incipient stages. Newman and Schrote use an approximate boundary
condition at normal incidence, which is essentially a transmission
line equivalent impedance, in their Moment Method (MM) solution [271.
Jin and Liepa also use this approximation in their numerical method
for computing the scattering from coated wedges illuminated by a TM
plane wave ([28]. Although Senior is investigating solutions for
coated geometries involving higher-order boundary conditions [29], the
approximate first-order poundary condition is much simpler to apply
and to use computationally; thus this is the boundary condition
analyzed in this report.

In their initial investigation of coated dihedral corner
reflectors [25] and [26], Griesser and Balanis use the approximate
poundary condition at normal incidence. This speeds up the
computation time by eliminating the calculation of a new equivalent
impedance at each incidence angle. For the higher-order terms
included in the dihedral corner reflector model, this would be a
complicated task. In the last report [30], however, it was stated
that using the normal incidence transmission line impedance model for

a finite-coating thickness is insufficient except for highly



conductive coatings or near and at normal incidence to either one of
the plates composing the corner reflector. This report details the
latest investigations concerning the improvement of the present model
for the coated dihedral corner reflector. After a brief discussion of
the UTD impedance wedge diffraction coefficient and the corner
reflector model, a formulation for the coated strip/plate model is
presented along with numerical results. The strip/plate model is a
much simpler target to analyze in terms of isolating and identifying
key factors in finite-thickness coating modeling; thus it is an
important point at which to begin in improving the present dihedral

corner reflector model.

II. THEORY AND RESULTS

A. IMPEDANCE-WEDGE DIFFRACTION COEFFICIENT

The fields diffracted from an impedance wedge at a distance p

from the wedge configuration of Fig. 1 can be represented as:

E%(p) = E'(Q) D(4,4,6,,8,,kp) e ¥ / Ap (1)
where

Ei(Q) = incident field at the point of diffraction due to

plane~wave incidence

D(¢,¢’',6,,6,,kp) = impedance-wedge diffraction coefficient

¢ = diffraction angle

¢’ = incidence angle

0, = Brewster angle for the "o" face

0, = Brewster angle for the "n" face

p = distance from the diffraction point to the observation

point



Plane-wave Incidence

Fig. 1. Impedance wedge geometry.



Far-field observation of line-source diffraction can Dbe
incorporated by reciprocity. The wedge configuration is illustrated
in Fig. 1. The explicit form of the diffraction coefficient is in
[23] and will not be repeated here. The diffraction coefficient
consists of various factors including reflection coefficient factors,
Fresnel transition function factors, and a factor containing the
Mn(¢,¢’,9°) Maliuzhinets function, which consists of a nested double
integral in the complex plane. Griesser and Balanis present a
simplification of this function in [24} which allows easy calculation
of the diffraction coefficient for any size impedance wedge.

The items of interest in the analysis for coated conducting
surfaces are the Brewster angles, 6, and 6,. These are defined as:

Soft Polarization:

6 sin_l(l/no) (2)

[o]

e sin_l(l/nn) (3)

n

Hard Polarization:

, -1

8, = sin () (4)
, -1

6, = sin (m,) (5)

where
n, = surface impedance of face "o", normalized with respect
to the free-space impedance
n, = surface impedance of face "n", normalized with respect

to the free-space impedance

The surface impedance for a finite-thickness coating is discussed
in the following section. For a coated conductor, the "n" face is a
perfect conductor, which has a surface impedance of zero. This
presents problems in numerical calculations because the corresponding
Brewster angle for soft polarization is infinite and for hard

polarization is 0. A means of avoiding computational errors is to



represent the perfectly conducting surface with a small but non-zero
surface impedance. Comparisons between the fields diffracted by a
perfectly conducting half-plane, calculated using the perfectly
conducting UTD coefficients (2], and the fields diffracted by various
impedance half-planes with non-zero surface impedances, calculated
using the impedance-wedge diffraction coefficients [24], are shown in
Figs. 2 - 7. For bistatic scattering, using m = 0.00001 ¢to
approximate a perfectly conducting surface is an adequate, but not
perfect, approximation for both polarizations (Fig. 2 and Fig. 3).
For monostatic scattering near-field incidence, the approximation
improves (Fig. 3 and Fig. 6) . Finally, for monostatic plane-wave
scattering far-field observation, which is the type of scattering
considered for RCS prediction, the m = 0.00001 approximation produces
nearly identical results to the perfectly conducting geometry (Fig. 4
and Fig. 7). This approximation will, therefore, be used in the

remainder of this analysis.

B. EQUIVALENT SURFACE IMPEDANCE FOR A COATED CONDUCTOR

The shorted, transmission-line impedance is a standard
approximation for the equivalent impedance of a conductor with a
finite-thickness coating ([31). The equivalent impedance normalized to

the free-space impedance is:

Neq = jm tan(kt sin(¢.)) (6)
where
n= dus e
k = wAi ue
t = the coating thickness
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M., € = the relative permeability and relative
permittivity of the coating
B, € = the permeability and permittivity of the coating

¢, = the angle of the transmitted ray with respect to the
surface of the coating

It is a standard practice to use the equivalent impedance
calculated at normal incidence, ¢ = 90°. This is valid provided that
either the incidence angle is near or at normal, or that the coating
has a high permittivity or a high conductivity, or that the coating is

very thin compared to a wavelength.

C. COATED DIHEDRAL CORNER REFLECTOR

The equivalent surface impedance for the coated dihedral corner

reflector (Fig. 8) was originally approximated by setting ¢, = 90°
[25]. The results compare favorably with MM results for high
conductivity coatings and for angles near normal incidence. For less

conductive materials and for angles away from normal incidence to one
of the plates comprising the reflector the accuracy declines. Fig. 9
compares MM results with UTD results for one of the worst cases, the
90° corner reflector. 1In an initial attempt to correct the UTD mcdel,
an angularly varying equivalent impedance was incorporated into the
first-order reflection terms only as these were thought to be the most
significant terms in error. The angularly varying equivalent
impedance was not included in the diffracted terms. A pattern
computed based on this model is shown in Fig. 10 along with the UTD
results from Fig. 9 using the original model. The two models give
nearly identical results. This indicates that the angular dependence

of the equivalent impedance in the reflected terms does not play a

16



Plote |

Reflections: 2, 4, 6, 8
Diffroctions: 1, 3, 5, 7
Fig. 8. Coated dihedral corner reflector geometry.
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major role; however, this may not be the case for the diffracted

terms.

An analysis of the various higher-order scattering terms reveals

that the most significant terms in the areas of disagreement are

first-order and second-order terms involving diffraction. This is
{llustrated in Figs. 10 - 14 which contain a breakdown of the
individual terms. The nomenclature used is:

Hn - first-order diffraction or reflection from point "n"

Hnm - second-order diffraction-diffraction,
reflection-diffraction, diffracgion—reflection, or
reflection-reflection from n to m

Incorporating the angularly varying surface impedance into diffraction
terms of the dihedral corner reflector model is a complicated task;
and it is postponed for the next period and until an evaluation of the
scattering from a coated plate is complete, where this variation will

be investigated.

D. COATED, RECTANGULAR PLATE

Because of its simplicity, the coated, rectangular plate of Fig.
15 is a convenient configuration for studying the effects of an
angularly varying equivalent surface impedance approximation for the
finite-thickness coating. At present, the model contains first-order
diffraction terms only. Comparisons between the UTD results obtained
with a constant equivalent surface impedance calculated at normal
incidence and UTD results obtained with an angularly varying impedance
are shown in Figs. 16 and 17. The Finite-Difference Time-Domain
(FD-TD) method is used for comparison in Fig. 16, and experimental

data is used in Fig. 17. Near normal incidence the two UTD methods

20
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Fig.

15.

Strip/plate geometry.
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produce similar results, but they deviate considerably from each other
away from normal incidence. For the soft polarization case of Fig.
16, both UTD models disagree with the FD-TD results away from normal
incidence, indicating a need to include higher-order terms.
surface-wave terms, which are not included in this model, can be a
significant contribution, expecially near grazing incidence. The need
for surface-wave and higher-order terms is substantiated also by the
hard polarization results of Fig. 17. The angularly varying impedance
model produces improved results in the intermediary lobes. The

discontinuity near grazing incidence points to a need for surface-wave

and higher-order terms, which will be investigated in the future.

III. FUTURE WORK

The dearth of research in the area of scattering from coated
geometries makes this an obvious focus of future investigation.
Specifically, the angularly dependent equivalent surface impedance for
the coated dihedral corner reflector will be incorporated into the
present analysis. Additionally, surface-wave and higher-order terms
will be added to the coated strip/plate model to study their effects,
which should be significant near grazing incidence.

Another area of future research 1is the continuation of
investigation into the nonprincipal-plane scattering from perfectly
conducting, rectangular plates. Previous reports [30]), [32], [33]
detail several different modeling schemes, including various

equivalent currents methods and corner diffraction coefficients.
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Results near and at normal incidence are accurate; however, near
grazing incidence, the need for more terms is obvious. Specifically,
third-order terms and more accurate corner diffraction terms seem
necessary. Recently, Hansen [34] formulated a promising corner
diffraction coefficient by comparing MM and Physical Theory of
Diffraction (PTD) results for the scattering from a plate. This
corner diffraction coefficient will be incorporated into our present
plate models and reported on in the future.

The ultimate goal of this research is to combine the work on
lossy surfaces and plate diffraction to obtain a comprehensive model
for scattering from coated plates. Bistatic scattering and
grazing-incidence scattering are important to consider in this model.
The accurate high-frequency modeling of the rectangular plate at all
angles of incidence and observation and the accurate characterization
of the effects of a finite-thickness coating are crucial to the

modeling of more complex targets.
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PART B

ANTENNA PATTERN CONTROL USING IMPEDANCE SURFACES

ABSTRACT

This is the semiannual progress report for the Antenna Pattern
Control Using Impedance Surfaces research grant. This report covers

the research period from February 1, 1990 to July 31, 1990.

During this research period, we have developed the capacity to
measure the electromagnetic properties of lossy materials. -We- have
also investigated the effects of using multiple material coatings on
the radiation pattern of the horn antenna. Numerous computations have
been devoted toward the inverse problem of synthesizing desired
radiation patterns using the impedance surfaces. Stabilizing the
equivalent sheet impedance using the linear control condition has been
attempted, and it has been found to be a very difficult task. A
detailed review of the method has been performed. Corrective measures
and alternative methods have been studied, and they are under review

for implementation.
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I. INTRODUCTION

A. Measurement of the Properties of the Lossy Materials

In this research period, we felt a great need ( because of the
lack of data from the manufacturers) for the measurement of the
electrical properties of the lossy materials which we introduced to
control the radiation pattern of the horn antenna. The accurate
values of the complex permittivity and permeability are needed both in
the realization of the horn antenna radiation pattern control and in
the analysis of the horn antennas with impedance walls. While time
consuming computations are queuing in the computer, a significant
portion of our time was devoted to developing the capability to
measure the electrical properties of lossy materials. Since the lossy
materials used in the antenna’s radiation pattern control are of solid
type and have relatively high loss, the measurement of the complex
permittivity (€,) and complex permeability (p,) can be performed with
very good accuracy with the S-parameter method utilizing the HP8510
network analyzer[l],(2]. Figure 1 shows the configuration of the

X-band waveguide sample holder in the testing system.

d Port 2

o

Port 1 g=

v

Detector

\\\§
L. F

—— d —|
Sample

Figure 1. Configuration of the sample holder
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In the S-parameter method, the mismatches in the feeding source
and the load can be calibrated by the HP8510 calibration process. The
effect of the higher order modes introduced by the insertion of the
lossy material sample can be reduced to a negligible level if the
sample is located far away (a few guided wavelengths) from the two
coaxial waveguide adapters. Thus, by solving the boundary conditions
at 0=0 and f=d using the transmission line model, the relationship
between the S-parameters and the electrical properties of the sample

can be found.

V' 1 -TH)r
511(”) - 1 = i_____E;l_ (1)
vi -0 1 - ToT?
Vi, 2
s, () = b=d _ (1 =TT 2)
viloo 1 - T?r?
where
J_u_: -1
j.ﬂz f1
8[‘
2
T = exp(-j—= d ) (4)
A=+ (5)
JE:_E; _ 1
2 2
;\O AC

where A, = free space wavelength, A, = cutoff wavelength of the X-band
waveguide sample holder. From equation (1)-(4), the T and ' can be

obtained by
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r-xs+4{k2-1 (6)

- Sll(w) + 521 (w) - r 7
T=—== [S;, (@) + S, (W] 7

where

(s, () - S2, (@] + 1

28, (w) (8)

Using the measured $;,(w) and S,;(w), I', T, and A can be computed
by using (6), (8), and (4). Then, using (3) and (5), the electrical
properties of the lossy material in the X-band waveguide sample holder

can be calculated using

+ T
M = (9)
1 1
Ao(l—F)J——E +—
A A
2 1 1
¢ ]
€ = Au A (10)
r

Since the measurement of S-parameters in HP8510 can be performed
to cover the entire X-band, the material properties in X-band are
obtained by the above formulas. This measurement system has been

automated.

B. Theoretical Development of the Synthesis Problem

A systematical effort has been devoted toward the inverse
problem. Special attentions have been paid to obtain a physically
realizable sheet impedance distribution so that the inverse problem
can be experimentally realized. However, this has been found to be a

formidable task, and we have not yet obtained a stable inverse
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solution of the impedance surface for a desired radiation pattern.
The analysis of the synthesis method leads us to believe that the

following reasons have contributed to the instabilities.
1. Non-Uniqueness of the Solution

Referring to Figure 2, the required aperture distribution M, of
the desired radiation pattern is to be realized by the control
surfaces which are located in different locations. Therefore, there
is no one-to-one correspondence between the control unité and the
desired aperture distribution. There are infinite many combinations
of control surface impedances which could lead to the desired aperture
distribution. The linear control condition allows a linear solution
of the control equation. The numerical error in the solution of the
electric currents due to the finite size of the segments on the
control surface and the rapid changes of the desired aperture
distribution seem to encourage the instability of the solution based

on the linear control condition.
2. Solution of the Transition Equation

In the previous progress report, the horn antenna problem is
outlined by Figure 2. In region 1 of Figure 2, the full-wave
transition technique is developed to analytically compute the
transmitted and reflected waves when this portion of the walls is of
perfectly conducting surfaces. This technique is based on the same
boundary condition as [3]. However, instead of approximating the
continuous horn transition with a number of stepped rectangular
waveguides, we formulate a set of first-order differential equations

to analytically account for such a continuous transition.
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For a horn transition, the problem can be viewed as a cumulated
effect of the infinitely small stepped transitions of the rectangular
waveguides as illustrated in Figure 3, where 4, B, €, and D are the
full-wave expansion coefficients. Since the pyramidal horn has a
continuous transition, its full-wave expansion coefficients are also
continuous. Therefore, we can formulate a set of first-order
differential equations in terms of their 4BED parameters which can be

represented in the form of a matrix equation as follows:

dy (z)

dz = T(z) ’y(Z) (11)
where
y(z)= g (11a)
D
and T(z) is the two-port system matrix of the transition. The

solution of (11) takes the general form of

S
Y(Zz) = e * Y(zl) (12)
where
Z2
S = T(z)dz (13)
Zy
and
2 3
es=I+s+—§—'+—s'—+ ...... (14)

In (14), I represents the unit matrix. Such a solution is a very

tempting one which is an analogy to the scalar differential equation.
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Unfortunately, the solution in (13) is valid for only a few cases, for
example when S(z) is diagonal or $(z) is independent of z[4],[5]. We
have just realized such a constraint. Since this solution affects the
computer program for both the analysis and the synthesis, alternative

methods for such a solution are under implementation.
II. ACCOMPLISHMENTS
A. Measurements of the Properties of the lossy materials

The S-parameter method with the HP8510 network analyzer has been
used in a series of measurements of the electrical properties of lossy
materials. To show the accuracy of such a measuring system, a nylon
sample was first used to perform the measurements. Figures 4 and 5
show, respectively, the real parts of the complex €, and . of nylon
(imaginary parts are negligibly small, and they are omitted) at
X-band. As shown in the figures, our measured values are within the
second decimal point accuracy compared to the well-known values of
nylon (g,=3.0, po=1). Next, we proceeded to measure material

properties of two surface-wave absorbing materials which are suited

for the radiation pattern control of the horn. The first is the
Eccosorb-GDS. Figures 6 and 7 show, respectively, the real and
imaginary parts of €, and p, for the material. These values differ

from those published in [6], however; our measurements have shown very
good repetition of the results. We believe that the batch difference
of the sample might be the reason for such a difference. The second
surface-wave absorbing material we measured was the SWAM (Surface Wave
Absorbing Material). Figures 8 to 11 show, respectively, the measured

data for real and imaginary parts of £, and p, for two measurements.

41



B. Theoretical Development of the Synthesis Problem

In the previous reports, we have demonstrated that the sheet
impedance material can be effectively used to control the radiation
pattern of the horn antenna. In this research period, the effect of
multiple sheets of impedance coatings on the top and the bottom walls
of the antenna has also been investigated. Figure 12 shows the
comparison of the E-plane radiation patterns for conducting walls, a
1.5 cm GDS plus a 3 cm SWAM coating, and a 7.45 cm GDS coatings on the
top and the bottom walls of the horn. The layout of the coating is
shown on the insert of Figure 12. At a frequency of 10.1 GHz, the GDS
material has a measured relative permittivity of 14.83-3j0.06, and a
relative permeability of approximately 1.47-31.46. The SWAM material
has a measured relative permittivity of 16.55-30.47, and a relative
permeability of approximately 1.50-3j1.22 at the same frequency. These
experimental results show that the combination of GDS and SWAM coating
materials can achieve the same pattern control as that of 7.45cm GDS
coating (eliminating the first sidelobe) while the pattern suffers a
much smaller loss in its total gain(4.5dB for 7.45cm GDS and 2.1dB for
the combined coating of GDS and SWAM) .

Efforts have also been devoted to examining the source of the
rapid ripples in the back lobes of the H-plane radiation pattern. To
investigate this ripple structure, the surface-wave absorbing material
SWAM has been used to coat on the outside surfaces of the horn
antenna. Figure 13 shows the comparison of the H-plane radiation
patterns. As expected, the coating of the surface wave absorbing
material greatly reduces the magnitude of the rapid ripple pattern,

which confirms our assumption that the diffraction of the outer
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surface and the back structure of the horn antenna measuring device is
one of the sources of these ripples. Also, as expected, since a
portion of the diffracted energy is absorbed by the surface wave
absorbing material, a much lower radiation is observed in the back

region of the horn antenna.

III. FUTURE WORK

Experimentally, we have demonstrated the control of the impedance
surfaces on the radiation pattern of the horn antenna. Theoretically,
however, we have not yet realized a stable and practical surface
impedance distribution on the inner surfaces of the horn antenna for a
desired radiation pattern in the synthesis problem. In the next
research period, the following efforts will be devoted to this

research project.

a. Develop an alternate solution of the transition equation (11)
using Runge-Kutta method (7] or other efficient numerical
methods.

b. Investigate the sidelobe level control to approach the desired
radiation pattern. As an example, Figure 14 shows a desired

E-plane radiation pattern, which is the =-90° to 90° portion of
the H-plane pattern of the same horn antenna, and the synthesized
pattern with the sidelobes being individually controlled by using
modified Taylor’s pattern synthesis(8],[9]. The sidelobe levels
are set at -31 dB for the first sidelobe, -40 dB for the second
sidelobe, and -42 dB for the third sidelobe. Figure 15 shows the
comparison of the required aperture magnetic current

distributions for the sidelobe level control and for the
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variational pattern control proposed by the previous report (an
equivalent null-free synthesis method by P. M. Woodward [10] may
lead to a similar aperture distribution). It is demonstrated in
Figure 15 that if instead of synthesizing every detail of the
desired radiation pattern, we may be better off to control only
its sidelobe levels to approach the desired pattern. If this is
attempted, a much smoother aperture magnetic current distribution
will be needed for the synthesis problem. Therefore, if the fine
details of the radiation pattern outside the major lobes are not
our major objective, a smoother aperture distribution can help to
stabilize the solution of the control surface impedance.
Moreover, this type of aperture distribution is more practical to
be realized by using impedance surfaces on the walls of the horn
antenna. Similar distributions have been achieved by using
impedance walls of the parallel plate waveguide as demonstrated
by [11]. Therefore, it is an option for us to work on.

From the realization point of view, since the sheet impedance
solution based on the linear control condition varies from point
to point, it is not a very practical way of realizing such a
distribution. We are looking at the solution to the inverse
problem in which the material parameters of the impedance coating
changing only on the direction of the horn transition; i.e., the

z-axis in Figure 3.
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Iv. PUBLICATIONS

During this reporting period, four papers have been submitted for
publication in IEEE Transaction on Antennas and Propagations. Two of
them have been accepted. One paper were presented in international
symposium. The work reported in all of these papers was supported by

this NASA grant. These are as follow:

a. Kefeng Liu and C. A. Balanis, "Simplified formulations for
two-dimensional TE-polarization field computations,” accepted to

be published in IEEE Trans. on Antennas and Propagat..

b. F. L. Whetten, Kefeng Liu and C. A. Balanis, "An efficient
numerical integral in three-dimensional electromagnetic field
computations," in IEEE Trans. Antannas and Propagat. to be

published in September, 1990.

c. Kefeng Liu and C. A. Balanis, "Analysis of horn antennas with
impedance walls,"™ in IEEE AP-S International Symposium Digest

(Dallas, TX) May 1990 pp. 1184-1187.

d. Kefeng Liu and C. A. Balanis, "Analysis of pyramidal horn
antennas with or without impedance walls," submitted for

publication in IEEE Trans. on Antennas and Propagat..

e. Kefeng Liu and C. A. Balanis, "Near-field interaction between
sinusoidal electric and magnetic dipoles," submitted for

publication in IEEE Trans. on Antennas and Propagat..
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